Government of Karnataka Department of Technical Education Bengaluru

Operating	Course Title: Operating System							
Operating of the second	Scheme (L:T:P) : 4:0:0	Total Contact Hours: 52	Course Code: 15CS43T					
	Type of Course: Lectures, Self Study & Student Activity.	Credit :04	Core/ Elective: Core					
CIE- 25 Mark	S	<u> </u>	SEE- 100 Marks					

Prerequisites

Basic Computer Concepts

Course Objectives

- 1. Understand the services of an operating system provides to its users and system itself.
- 2. Apply various CPU scheduling algorithms and recognize the classic synchronization problems.
- 3. Compare methods for handling deadlocks and apply various memory management techniques.
- 4. Describe file systems.

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

	Course outcome	CL	Linked PO	Teaching Hours
CO1	Describe operating system operations and operating system structures.	U	1,2,9,10	08
CO2	Understand process management and apply process scheduling algorithms	U, A	2,3,9,10	12
CO3	Recognize Synchronization and discover the methods for handling deadlocks.	U, A	2,3,9,10	08
CO4	Explain the memory management techniques.	U, A	2,3,9,10	08
CO5	Discover the concepts related to virtual memory management	U, A	2,3,9,10	08
CO6	Identify file systems concepts.	U, A	2,3,9,10	08
		Total	sessions	52

Legends: R = Remember U= Understand; A= Apply and above levels (Bloom's revised taxonomy)

Course-PO Attainment Matrix

Course	Programme Outcomes									
	1	2	3	4	5	6	7	8	9	10
Operating System	-	3	3	-	-	-	-	-	3	3

Level 3- Highly Addressed, Level 2-Moderately Addressed, Level 1-Low Addressed.

Method is to relate the level of PO with the number of hours devoted to the COs which address the given PO.

If \geq 40% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 3 If 25 to 40% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 2

If 5 to 25% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 1

If < 5% of classroom sessions addressing a particular PO, it is considered that PO is considered not-addressed.

Course Content and Blue Print of Marks for SEE

Unit No	Unit Name	Hour	Questions to be set for SEE			Marks Weightage	Marks Weightage (%)
			R	U	А	А	
Ι	Introduction to operating systems	8	-	22	-	22	15.38
II	Process management	12	-	22	10	32	23.10
III	Synchronization & Deadlocks	08	-	12	10	22	15.38
IV	Memory management	08	-	14	10	24	15.38
V	Virtual memory management	08	-	13	10	23	15.38
VI	File system	08	-	12	10	22	15.38
	Total	52	-	95	50	145	100

UNIT I : Introduction to Operating System

What operating systems do? Computer System architecture, Operating System structure, Operating System operations, Process management, Memory management, Storage management, Protection and security, Distributed system, Special-purpose systems, Computing environments, Open-source Operating Systems..

UNIT II: Process Management

Process concept, Process scheduling, Operations on processes, Inter-process communication, Process Scheduling: Basic concepts, Scheduling criteria, Scheduling algorithms.

UNIT III: Synchronization & Deadlocks

Synchronization – Background, The critical section management and semaphores (Concepts only)

Deadlocks- System model, Deadlock characterization, Methods for handling deadlocks, Deadlock prevention, Deadlock avoidance, Deadlock detection, Recovery from deadlock

2

08 Hrs

12 Hrs

08 Hrs

15CS43T

UNIT IV: Memory Management Strategies

Background, Swapping, Contiguous memory allocation, Paging, Structure of page table, Segmentation

UNIT V: Virtual Memory Management

Background, Demand paging, Copy-on-write, Page replacement, Allocation of frames .

UNIT VI: File System

File concept, Access methods, Directory and disk structure, File system mounting, File Sharing, Protection.

Text books

 Operating System Principles – Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, 8th edition, Wiley-India. (Chapters-1, 3, 5, 6, 7, 8, 9, 10 and 11)

ISBN- 9788126520510

References

- 1. Operating Systems, I. Chandra Mohan, PHI, 2013, ISBN 9788120347267
- 2. http://www.tutorialspoint.com/operating system/
- 3. http://courses.cs.vt.edu/~csonline/OS/Lessons/index.html
- 4. http://www.nptel.ac.in

Suggested list of student activities

Note: the following activities or similar activities for assessing CIE (IA) for 5 marks (Any one)

Student activity like mini-project, surveys, quizzes, etc. should be done in group of 3-5 students.

1. Each group should do any one of the following type activity or any other similar activity related to the course and before conduction, get it approved from concerned course coordinator and programme coordinator.

2. Each group should conduct different activity and no repeating should occur

1	How to install and Uninstall an Operating System on a New Computer
2	How to Remove a Second Operating System from a PC
3	A Survey of recent Operating System
4	Case study on real time deadlock situation
5	A case study on real time process synchronization
6	Comparison of OS working in single core and multi core environment
7	Comparison of 32 bits and 64 bits OS
8	Operating system is responsible for following activities in connection
	with management of memory:
	• Allocation and de allocation of memory as and when needed
	• Keeping track of used and unused memory space.
	• Deciding what process to be loaded into memory in case space becomes
	available.
9	For secondary space management:
	• Swap space and free space management
	Disk scheduling

08 Hrs

08 Hrs

08 Hrs

3

	• Allocating space to the data and programs onto the secondary
	storage device.
10	For process management:
	• Creation, deletion of both user and system process.
	Handling process synchronization.
	• Deadlock handling.

Course Delivery

The course will be delivered through lectures and Power point presentations/ Video

Method	What		То	When/Where	Max	Evidence	Course
			who	(Frequency in	Marks	collected	outcomes
			m	the course)			
	CIE	IA		Three IA tests			1,2,3,4
				(Average of	20	Dhua haalaa	
				three tests will	20	Blue books	
ent			ts	be computed)			
sm			len	Student	05	Depart	1,2,3,4
ses			tuc	activities	03	Report	
ot As				Total	25		
ire	SE	End		End of the	100	Answer scripts	1,2,3,4
D	Е	Exam		course	100	at BTE	
	Student			Middle of the			1 & 2 Dolivory
ţ	Feed	Feedback		course		Feedback forms	1 & 2 Delivery
Jen	on co	ourse					of course
ssn	End o	of	nts	End of the			1,2,3,4
sse	Cour	se	Ide	course			Effectiveness of
As	Surve	ey	Stu			Out	Delivery of
ect		-				Questionnaires	instructions &
dir							Assessment
In							Methods

Course Assessment and Evaluation Scheme

Note: I.A. test shall be conducted for 20 marks. Average marks of three tests shall be rounded off

to the next higher digit.

Questions for CIE and SEE will be designed to evaluate the various educational components (Bloom's taxonomy) such as:

Sl. No	Bloom's Category	%
1	Remembrance	20
2	Understanding	50
3	Application	30

Note to IA verifier: The following documents to be verified by CIE verifier at the end of semester

- 1. Blue books (20 marks)
- 2. Student suggested activities report for 5 marks
- 3. Student feedback on course regarding Effectiveness of Delivery of instructions & Assessment Methods.

4

	FORMAT OF I A TEST QUESTION PAPER (CIE)								
Test/Date	Date and Time Semester/year Course/Course Code			Max Marks					
Ex: I test/6 th weak of I/II SEM						20			
sem 1	sem 10-11 Am Year:								
Name of C	Name of Course coordinator : Units:								
CO's:									
Question									
Question		Question		MARKS	CL	со	РО		
1									
2									
3									
4									

Note: Internal choice may be given in each CO at the same cognitive level (CL).

MODEL QUESTION PAPER (CIE)

Test/D Ti	ate and ime	Semester/year	Course/Course Code	Max	x Mai	rks	
Ex: I test	t/6 th week	IV SEM	Operating System		20		
of sem	10-11 AM	Year: 2015-16	Course code:15CS43T	-			
Name of OUnits:1,2							
		Note: Ar	iswer all questions				
Questio n no		Question					
1	Explain OS	U	1	1,2			
2	Explain the	Explain the computer system architecture(5)					
3	Consider th time given Pro P P P P The proce time 0. Wh for FCFS &	ne following set of process in milliseconds cess Burst time 1 9 2 11 3 3 esses are assumed to have nat is the waiting time and & PRIORITY scheduling a	ss with the length of the CPU burst Priority 3 1 3 arrived in the order P ₁ , P ₂ , P ₃ all at 1 turnaround time of each process algorithms? (5)	A	2	1,2	
4	What is a p process.	process? Draw and explain	the state transition diagram of a	U	2	1,2	

5

Format for Student Activity Assessment

DIMENSION	Unsatisfactory 1	Developing 2	Satisfactory 3	Good 4	Exemplary 5	Score
Collection of data	Does not collect any information relating to the topic	Collects very limited information; some relate to the topic	Collects some basic information; refer to the topic	Collects relevant information; concerned to the topic	Collects a great deal of information; all refer to the topic	3
Fulfill team's roles & duties	Does not perform any duties assigned to the team role	Performs very little duties	Performs nearly all duties	Performs all duties	Performs all duties of assigned team roles with presentation	4
Shares work equally	Always relies on others to do the work	Rarely does the assigned work; often needs reminding	Usually does the assigned work; rarely needs reminding	Does the assigned job without having to be reminded.	Always does the assigned work without having to be reminded and on given time frame	3
Listen to other Team mates	Is always talking; never allows anyone else to speak	Usually does most of the talking; rarely allows others to speak	Listens, but sometimes talk too much	Listens and contributes to the relevant topic	Listens and contributes precisely to the relevant topic and exhibit leadership qualities	3
					TOTAL	13/4=3.25=4

*All student activities should be done in a group of 4-5 students with a team leader.

- 7. Explain swapping technique with a neat diagram
- 8. Write a note on Copy-on-write.
- 9. Discuss briefly client-server model of file sharing

PART-B

10X7=70 Marks Answer any <u>SEVEN</u> full questions each carries 10 marks.

1. What are the different operating system operations.

Process

 \mathbf{P}_1

 P_2

- 2. Different activities in connection with process management, memory management and storage management
- 3. Consider the following set of process with the length of the CPU burst time given in milliseconds

Priority

3

1

	P ₃	3	3	
	P ₄	8	4	
The processes are	assumed to have a	arrived in the order	$P_1, P_2, P_3 \& P_4 all$	at time 0.

10

13

Burst Time

a. Draw the Gantt chart for FCFS and PRIORITY scheduling algorithms.

b. What is the waiting time and turnaround time of each process for FCFS & PRIORITY scheduling algorithms.

c. Calculate the average waiting time and average turnaround time for FCFS & PRIORITY scheduling algorithms.

7

MODEL QUESTION PAPER

Time: 3 Hours

IV- Semester Course Title: Operating System

Diploma in Computer science & Engineering

Max Marks: 100

5X6=30 Marks

Code: 15CS43T

PART-A

Answer any <u>SIX</u> questions. Each carries 5 marks.

- 1. Write a note on client/server computing.
- 2. Explain the contents of PCB with neat diagram.
- 3. Explain the different scheduling criteria.
- 4. Write a note on critical-section problem and the solution to solve it.
- 5. How deadlock can be avoided using resource allocation graph? Explain
- 6. What is fragmentation? Differentiate between internal and external fragmentation.

- 4. Explain the different operations on processes.
- 5. Explain the banker's algorithm.
- 6. List and explain different structure of the page table with a neat diagram
- 7. Explain the contiguous memory allocation.
- Consider the following reference string: 1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6. How many page faults would occur for the following page replacement algorithm assuming 3 page frames: 1) LRU 2) FIFO 3) Optimal Page Replacement.
- 9. List out common file types with their extension and functions
- 10. Explain Tree-structured directory and Acyclic-graph directory with a neat diagrams

MODEL QUESTION BANK

Diploma in Computer Science & Engineering

IV Semester

Course Title: Operating System

CO	Question	CL	Marks
Ι	Write a note on protection and security.	U	05
	Write a note on client/server computing.	U	
	Discuss time sharing system.	U	
	Explain distributed system.	U	
	Explain the peer-to-peer computing.	U	
	Explain OS in user's view and system's view.	U	
	List the advantages and disadvantages of multiprogramming system	U	
	What is an operating system? Explain the computer system architecture.	U	10
	What are the different operating system operations?	U	
	Compare process management and memory management.	U	
	Explain the special-purpose systems.	U	
	Explain clustered system.	U	
	Different activities in connection with process management, memory	U	
	management and storage management.		
	What is a process? Draw and explain the state transition diagram of a	U	- 05
	process.	TT	
	Explain the contents of PCB with neat diagram.	U	
	Compare long-term, short-term and medium-term scheduler.	U	
	Explain the different scheduling criteria.	U	
	Explain the different operations on processes.	U	10
	What is inter-process communication (IPC). Explain the two models of	U	
	IPC with neat diagram.		
	Consider the following set of process with the length of the CPU burst	Α	
Π	time given in milliseconds		
	Process Burst time priority		
	$P_2 = 13 = 1$		
	P3 3 3		
	The processes are assumed to have arrived in the order P_1 , P_2 , P_3 all at		
	time 0.		
	a. Draw the Gantt chart for FCFS and PRIORITY scheduling		
	algorithms.		
	b. What is the waiting time and turnaround time of each process		
	c Calculate the average waiting time and average turnaround		
	time for FCFS & PRIORITY scheduling algorithms.		
	Similar Problems		
ш	Write a note on semaphores.	U	05
	Explain the 3 requirements for the solution to critical-section problem.	Α	
	Write a note on critical-section problem and the solution to solve it.	Α	

	What is deadlock? What are the necessary conditions for deadlock?	U	
	How deadlock can be prevented? Explain.	U	
	How deadlock can be avoided using resource allocation graph? Explain.	Α	
	Explain how to recover from deadlock.	U	
	How deadlock can be detected? Explain.	U	
	Explain the banker's algorithm.	U	10
	Explain resource-allocation graph with deadlock and without deadlock	Α	10
	with examples.		
	Write a note on shared pages.	U	
	Explain First-fit, Best-fit and Worst-fit strategies for memory allocation.	U	
	What is fragmentation? Differentiate between internal and extern fragmentation.	U	
	Explain basic concept of memory allocation using paging	U	05
	Explain how memory is protected in paging with a neat diagram.	U	
IV	Differentiate between logical and physical address space	U	
	Explain address binding with a neat diagram.	U	
	Explain swapping technique with a neat diagram.	U	
	Explain the contiguous memory allocation.	U	
	Explain hardware implementation of page table with a neat diagram	Α	10
	List and explain different structure of the page table with a neat diagram.	Α	
	What is segmentation? Draw and explain its hardware support.	Α	
	Explain the virtual memory concept with a neat diagram	U	- 05
	Explain virtual address space with a neat diagram.	U	
	Explain demand paging with a neat diagram.	U	
	Explain the steps for handling page fault with a neat diagram.	U	
	Write a note on Copy-on-write.	U	
V	Explain the need for page replacement.	U	
	How frames are allocated? Explain.	U	
	Explain the steps involved in the basic page replacement with diagram.	U	
	Consider the following reference string:	Α	
	1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6. How many page faults would occur		10
	for the following page replacement algorithm assuming 3 page frames: 1)		
	Briefly explain the operations that can be performed on files	II	
VI	What are the different operations performed on a directory		05
	Write a note on remote file systems		
	Discuss briefly client-server model of file sharing		
	Define file and explain the different file attributes		
	List out common file types with their extension and functions		10
	Differentiate between sequential access and direct access methods	U	
	Explain Single-level directory and Two-level directory with a next	Δ	
	diagram.	A	
	explain Tree-structured directory and Acyclic-graph directory with a neat diagram.	Α	

